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 Problem:

 Given two sets 𝐴, 𝐵 of points in ℝ2,

 Find min-cost matching

 weighted sets of size 𝑛

 a.k.a., Earth-Mover Distance, Wasserstein metric…

 Classically: LP with 𝑛2 variables

 Best time: ෨𝑂(𝑛2/𝜖4) for 1 + 𝜖 approx

[Altschuler-Weed-Rigolet’17]

 But can hope for ≪ 𝑛2 runtime!

 input is of size 𝑂(𝑛)

Planar transport
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Main result:

For fixed 𝜖, can solve in 𝑛1+𝑜(1) time



Brief history of planar transportation

 Long history of work [Vaidya’89,  Agarwal-Efrat-Sharir’00, 
Varadarajan-Agarwal’99, Agarwal-Varadarajan’04, Indyk’07, 
Sharathkumar-Agarwal’12]

 Transportation: 𝑂(1) approximation in ෨𝑂(𝑛) time

 EMD (unweighted): 1 + 𝜖 approximation in ෨𝑂(𝑛) time

 High-dimensional case: points in ℝ𝑑

 exp(𝑑) slow-down…

 𝑂(log 𝑛 ⋅ log 𝑑) approximation in ෨𝑂(𝑛) time [Charikar’02, 
Indyk-Thaper’04, Grauman-Darell’05, A-Indyk-Krauthgamer’07]

 Via embedding into ℓ1
 Also useful for efficient Nearest Neighbor Search



Approach: Sketching + Divide-And-Conquer

 Partition the space hierarchically in a “nice way”

 In each part

 Compute a “local solution” for the local view

 Sketch the solution using small space

 Combine local sketches into (more) global solution
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Solve-And-Sketch framework



Detour: Minimum Spanning Tree

 Find MST of an implicit graph on 𝑛 points in ℝ𝑑



MST via Solve-and-Sketch: try 1

 Partition the space hierarchically in a “nice way”

 In each part

 Compute a “local solution” for the local view

 Sketch the solution using small space

 Combine local sketches into (more) global solution

quad trees!

local MST

a representative point 

(to connect to rest)



Not optimal MST:

 Quad tree can cut MST edges

 forcing irrevocable decisions

 Choose a wrong representative



 Randomly shifted grid [Arora’98, …]

 Each cell has an 𝜖Δ-net 𝑁

 Net points are entry/exit portals for the cell

 Claim: all distances preserved up to 1 + 𝜖 in expectation

New Partition: Grid Distance

Δ



MST: S-a-S algorithm
 Assume entire pointset in a square of size 𝑂( 𝑛) × 𝑂 𝑛
 & partition into 2 levels only:

 Randomly-shifted grid with Δ = 𝑛1/4

 Local solution: 
 Run Kruskal for edges up to length 𝜖Δ

 Sketch of the local solution:

 Snap points to 𝜖2Δ-net, and store their connectivity ⇒ size 𝑠 = 𝑂
1

𝜖4

Δ Runtime:

• 𝑛 leaf cells: 𝑂 Δ4 time each

• root: 𝑂 𝑛/𝑠 2 ⋅ 𝑠
2

• total: 𝑂 𝑛 ⋅ 𝑛



MST Analysis

 Equivalent to running Kruskal on the grid distance

 Any distance between cells is ≥ 𝜖Δ

 1) Safe to run Kruskal “locally” inside each cell up to this 

threshold!

 2) Snapping to 𝜖2Δ-net points costs a little bit only 

Runtime:

• 𝑛 leaf cells: 𝑂 Δ4 time each

• root: 𝑂 𝑛/𝑠 2 ⋅ 𝑠
2

• total: 𝑂 𝑛 ⋅ 𝑛



Back to Optimal Transport (EMD)

 Theorem:

 1 + 𝜖 cost approximation in ℝ𝑑 space

 𝑛1+𝑜(1) time for constant 𝜖, 𝑑



 Partition the space hierarchically in a “nice way”

 In each part

 Compute a “local solution” for the local view

 Sketch the solution using small space

 Combine local sketches into (more) global solution

Solve-And-Sketch for EMD

fat quad-tree (as before)

& use grid distance

after committing to a wrong alternation,

cannot get <2 approximation!

cannot precompute

any “local solution”

all potential local solutions



Sketching ALL local solutions

 Let 𝑘 =size of 𝜖-net (“portal” points)

 Define “solution function” 𝐹:ℝ𝑘 → ℝ+

 interpret 𝑥 ∈ ℝ𝑘 as the interface flow (matching) at the portals

 𝐹 𝑥 = min-cost matching assuming flow 𝑥 at portals

 Goal: sketch entire function 𝐹 !



Sketching solution function 𝐹

 We do not know if is possible…

 Approach ?

 Prove “cool properties” about 𝐹

 Show:  ∀𝐹 with “cool properties” => sketchable

 May require Ω(𝑛) even for (generic) 𝐹 satisfying:

 convex

 Δ-Lipshitz

 𝑘 = 2 inputs
𝑥1

𝑥2

0

But can for:

𝐹′ 𝑥 = 𝐹 𝑥 + 𝜖Δ ⋅ ||𝑥||1



Sketching solution function 𝐹′

 Lemma: can (1 + 𝜖)-sketch 𝐹’ using space 
log 𝑛

𝜖

𝑂 𝑘

 sketch: 𝐹’(𝑥) for 𝑥 with each coordinate 𝑥𝑖 = power of 1 + 𝜖

 Why is regularization term ok?

 part of the cost at next level up: distance between cells ≥ 𝜖Δ

 Done! 𝐹 captures all information from the cell

 if we don’t care about runtime…

𝐹′ 𝑥 = 𝐹 𝑥 + 𝜖Δ ⋅ ||𝑥||1



 When combining: input = sketches 𝐹’

 need to extrapolate 𝐹’ from sketches

 Solution 1: formulate as a convex program

 extrapolate 𝐹′ by computing lower convex hull

 Solution 2: lower convex hull+LP = fancier LP

Local runtime: polynomial

𝐹5′𝐹4′ 𝐹6′

𝐹3′𝐹2′

𝐹8′

𝐹1′ variables: flows between portals

min σ𝑖 𝐹𝑖′(projection of vars on cell 𝑖)
subject to:

flow preservation conditions

size: 𝑝𝑜𝑙𝑦(𝑆)



Overall algorithm

 Decompose the LP into many small ones

 small ones have size ≤ 𝑛𝑜 1

 ok to use any poly-time LP solver

 recompose hierarchically (divide and conquer)

 Enabling tool: sketching the solution function!



Wrap-up

 Optimal low-d transport in near-linear time

 Solve-And-Sketch framework = divide-and-conquer the LP

 Parallelizable

 Generalizes to 𝑑-dimensional case (even doubling)

 Some open questions:

 Sketch “solution function” in 𝑝𝑜𝑙𝑦
log 𝑛

𝜖
space?

 Near-linear time for 2-Wasserstein metric?

 Best known: ෨𝑂(𝑛1.5) [Phillips-Agarwal’06, Agarwal-Sharathkumar’14]

 Evidence it is a harder problem, for ℝ3 [A-Naor-Neiman’16]

 Other problems? Which LPs are decomposable?


