# Optimal planar transport in near-linear time



(Columbia U)

Joint with: Aleksandar Nikolov (Toronto U), Krzysztof Onak (IBM TJ Watson), Grigory Yaroslavtsev (Indiana U, Bloomington)

#### Planar transport

#### Problem:

- Given two sets A, B of points in  $\mathbb{R}^2$ ,
- Find min-cost matching
- weighted sets of size n
- a.k.a., Earth-Mover Distance, Wasserstein metric...

#### • Classically: LP with $n^2$ variables

- Best time:  $\tilde{O}(n^2/\epsilon^4)$  for  $1 + \epsilon$  approx [Altschuler-Weed-Rigolet'17]
- But can hope for  $\ll n^2$  runtime!
  - input is of size O(n)

# $\min_{\pi \in \mathbb{R}^{n^2}_+} \sum_{ij} ||\mathbf{p}_i - \mathbf{q}_j|| \cdot \pi_{ij}$ s.t. $\pi \mathbf{1} = \frac{1}{n} \mathbf{1}$ $\pi^t \mathbf{1} = \frac{1}{n} \mathbf{1}$

#### Main result:

For fixed  $\epsilon$ , can solve in  $n^{1+o(1)}$  time

### Brief history of planar transportation

- Long history of work [Vaidya'89, Agarwal-Efrat-Sharir'00, Varadarajan-Agarwal'99, Agarwal-Varadarajan'04, Indyk'07, Sharathkumar-Agarwal'12]
  - Transportation: O(1) approximation in  $\tilde{O}(n)$  time
  - EMD (unweighted):  $1 + \epsilon$  approximation in  $\tilde{O}(n)$  time
- High-dimensional case: points in  $\mathbb{R}^d$ 
  - exp(d) slow-down...
  - $O(\log n \cdot \log d)$  approximation in  $\tilde{O}(n)$  time [Charikar'02, Indyk-Thaper'04, Grauman-Darell'05, A-Indyk-Krauthgamer'07]
  - Via embedding into  $\ell_1$
  - Also useful for efficient Nearest Neighbor Search

#### Approach: Sketching + Divide-And-Conquer

- Partition the space hierarchically in a "nice way"
- In each part
  - Compute a "local solution" for the local view
  - Sketch the solution using small space
  - Combine local sketches into (more) global solution

Solve-And-Sketch framework

 $\star$ 

#### Detour: Minimum Spanning Tree

#### Find MST of an implicit graph on n points in $\mathbb{R}^d$



#### MST via Solve-and-Sketch: try 1

- Partition the space hierarchically in a "nice way"
- In each part
  - Compute a "local solution" for the local view

local MST

quad trees!

- Sketch the solution using small space
- Combine local sketches into (more) global solution

a representative point (to connect to rest)



#### Not optimal MST:

- Quad tree can cut MST edges
  - forcing irrevocable decisions
- Choose a wrong representative



#### New Partition: Grid Distance

- Randomly shifted grid [Arora'98, ...]
- Each cell has an  $\epsilon \Delta$ -net N
- Net points are entry/exit portals for the cell
- Claim: all distances preserved up to  $1 + \epsilon$  in expectation



### MST: S-a-S algorithm

- Assume entire pointset in a square of size  $O(\sqrt{n}) \times O(\sqrt{n})$
- & partition into 2 levels only:
  - Randomly-shifted grid with  $\Delta = n^{1/4}$
- Local solution:
  - Run Kruskal for edges up to length  $\epsilon \Delta$
- Sketch of the local solution:
  - Snap points to  $\epsilon^2 \Delta$ -net, and store their connectivity  $\Rightarrow$  size  $s = O\left(\frac{1}{\epsilon^4}\right)$



#### **Runtime:**

•  $\sqrt{n}$  leaf cells:  $O(\Delta^4)$  time each

• root: 
$$O\left(\left((\sqrt{n}/s)^2 \cdot s\right)^2\right)$$

• total: 
$$O(n \cdot \sqrt{n})$$

#### **MST** Analysis

- Equivalent to running Kruskal on the grid distance
- Any distance between cells is  $\geq \epsilon \Delta$ 
  - I) Safe to run Kruskal "locally" inside each cell up to this threshold!
  - > 2) Snapping to  $\epsilon^2 \Delta$ -net points costs a little bit only



## **Runtime:** • $\sqrt{n}$ leaf cells: $O(\Delta^4)$ time each • root: $O\left(\left((\sqrt{n}/s)^2 \cdot s\right)^2\right)$ • total: $O(n \cdot \sqrt{n})$

### Back to Optimal Transport (EMD)

- Theorem:
  - $1 + \epsilon$  cost approximation in  $\mathbb{R}^d$  space
  - $n^{1+o(1)}$  time for constant  $\epsilon$ , d



### Solve-And-Sketch for EMD

Partition the space hierarchically in a "nice way"

- In each part \_\_\_\_\_ all potential local solutions
- X Compute a "local solution" for the local view
  - Sketch the solution using small space
  - Combine local sketches into (more) global solution

cannot precompute any "local solution" fat quad-tree (as before) & use grid distance

committing to a wrong alternation, ot get <2 approximation!

#### Sketching ALL local solutions

- Let k = size of  $\epsilon$ -net ("portal" points)
- ▶ Define "solution function"  $F: \mathbb{R}^k \to \mathbb{R}_+$ 
  - ▶ interpret  $x \in \mathbb{R}^k$  as the *interface flow* (matching) at the portals
  - F(x) = min-cost matching assuming flow x at portals
- Goal: sketch entire function F !



### Sketching solution function F

- We do not know if is possible...
- Approach ?
  - Prove "cool properties" about F
  - Show:  $\forall F$  with "cool properties" => sketchable
- May require  $\Omega(n)$  even for (generic) F satisfying:
  - convex
  - ► <u>Δ</u>-Lipshitz
  - k = 2 inputs



But can for:  $F'(x) = F(x) + \epsilon \Delta \cdot ||x||_1$  Sketching solution function F'

$$F'(x) = F(x) + \epsilon \Delta \cdot ||x||_1$$

- Lemma: can  $(1 + \epsilon)$ -sketch *F*' using space  $\left(\frac{\log n}{\epsilon}\right)^{O(k)}$ 
  - sketch: F'(x) for x with each coordinate  $x_i =$  power of  $1 + \epsilon$
- Why is regularization term ok?
  - ▶ part of the cost at next level up: distance between cells  $\geq \epsilon \Delta$
- Done! F captures all information from the cell
  - if we don't care about runtime...



#### Local runtime: polynomial

- When combining: input = sketches F'
  - need to extrapolate F' from sketches
- Solution I: formulate as a convex program
  - extrapolate F' by computing lower convex hull
- Solution 2: lower convex hull+LP = fancier LP



variables: flows between portals

min  $\sum_{i} F_{i}'$  (projection of vars on cell *i*) subject to: flow preservation conditions

#### size: poly(S)

#### Overall algorithm

- Decompose the LP into many small ones
  - small ones have size  $\leq n^{o(1)}$
  - ok to use any poly-time LP solver
  - recompose hierarchically (divide and conquer)
- Enabling tool: sketching the solution function!



#### Wrap-up

- Optimal low-d transport in near-linear time
  - Solve-And-Sketch framework = divide-and-conquer the LP
  - Parallelizable
  - Generalizes to *d*-dimensional case (even doubling)
- Some open questions:
  - Sketch "solution function" in  $poly\left(\frac{\log n}{\epsilon}\right)$  space?
  - Near-linear time for 2-Wasserstein metric?
    - Best known:  $\tilde{O}(n^{1.5})$  [Phillips-Agarwal'06, Agarwal-Sharathkumar'14]
    - Evidence it is a harder problem, for  $\mathbb{R}^3$  [A-Naor-Neiman'16]
  - Other problems? Which LPs are decomposable?